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ABSTRACT A line-scan machine vision system and
multispectral inspection algorithm was developed and
evaluated for differentiation of wholesome and systemi-
cally diseased chickens on a high-speed processing line.
The inspection system acquires line-scan images of
chicken carcasses on a 140 bird/min processing line and
is able to automatically detect individual birds enter-
ing and exiting the field of view of the camera, locate
a specified region of interest for spectral image analy-
sis, and produce a decision output for each bird. The
same spectral line-scan imaging system was used for
hyperspectral data acquisition-analysis to develop the
multispectral detection and differentiation algorithm
and for multispectral implementation of the algorithm
for real-time on-line inspection on the processing line.
Results showed that effective multispectral inspection
could be achieved by analysis of a selected region of

interest across the breast area from images at the 580-
and 620-nm wavebands. Overall system performance
was evaluated during two 8-h shifts in which the system
inspected over 100,000 chickens, with system results
compared with Food Safety and Inspection Service in-
spector tallies of wholesome and systemically diseased
birds for that same time period. During system veri-
fication, the system accurately classified wholesome
and systemically diseased chickens that were observed
by a veterinarian posted beside the system to perform
real-time identifications of the same birds. The high
accuracy of the results demonstrated that the spectra
line-scan imaging system and multispectral detection
and differentiation algorithm can be effectively used
for on-line high-speed presorting applications for young
broiler chickens.
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INTRODUCTION
American chicken plants processed almost 9 billion

broiler chickens in 2008 (USDA, 2009). To help main-
tain product safety and reduce the risk of food safety
hazards for poultry, egg, and meat products, the USDA
Food Safety and Inspection Service (FSIS) imple-
mented the Hazard Analysis and Critical Control Point
program in processing plants throughout the country
(USDA, 1996) and, more recently, has been testing the
Hazard Analysis and Critical Control Point-Based In-
spection Models Project (HIMP) in a small number
of volunteer plants (USDA, 1997). The HIMP perfor-
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mance standards require that chickens with infectious
conditions such as septicemia and toxemia be removed
from the processing lines. Processing plants seeking to
satisfy increasing consumer demand by increasing their
output through faster processing speeds are limited by
the current inspection system, which limits each hu-
man inspector on the line to examining a maximum of
35 birds/min. New high-speed inspection technologies
may help poultry plants to maintain their competitive-
ness and increase production throughput while ensur-
ing that food safety regulations are satisfied.

Effective automated imaging inspection systems
must be able to effectively acquire and process images
of carcasses at the high speeds of commercial process-
ing lines. Previous work to develop imaging technolo-
gies suitable for commercial processing has included
systems and methods targeting poultry processing con-
trol and management (Daley et al., 2003; Usher et al.,
2005) and automated food safety inspection for con-
tamination detection and carcass wholesomeness (Park
and Chen, 1996; Lawrence et al., 2003b; Yang et al.,
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2006b). In particular, the combined advantages of ma-
chine vision and spectroscopy-based analysis are real-
ized with spectral imaging methods that can produce
high accuracy in automated applications. Nondestruc-
tive multispectral imaging shows great potential for
high-speed on-line inspection for commercial process-
ing lines; the acquisition of both spectral and spatial
information from bird surfaces allows for efficient and
accurate evaluation of both quality and safety criteria,
such as systemic or localized disease conditions, con-
tamination detection, and quality traits such as bird
size, defects, and damage.

Multispectral imaging relies on the selection of sev-
eral key imaging wavebands. With spatially matched
images at several wavelengths, analysis algorithms can
include a variety of pixel-based arithmetic methods,
such as band ratios and differences, as well as conven-
tional machine vision techniques, resulting in enhanced
spectral- and spatial-based image features that are use-
ful for rapid and effective inspection applications. Both
spectral and spatial features are critical to effective
on-line poultry inspection, as demonstrated by several
recent laboratory and pilot-scale studies. Yang et al.
(2005) achieved classification accuracies of 95.7% for
wholesome and 97.7% for unwholesome (systemically
diseased) chicken carcasses using multispectral images
at the 540-, 610-, and 700-nm wavebands. Park et al.
(2002) achieved 97.3 to 100% accuracies in identifying
fecal and ingesta contamination of poultry carcasses
using images at the 434-, 517-, 565-, and 628-nm wave-
bands.

A primary factor for effective multispectral imaging
inspection is the selection of wavebands appropriate to
the application at hand (Mehl et al., 2002; Windham
et al., 2003). In the past, conventional development
of on-line multispectral methods often used spectros-
copy analysis or hyperspectral imaging analysis in the
laboratory to first select specific wavebands useful for
the identification of a particular disease, contamina-
tion, or defect problem. Once specific wavebands and
image features were determined, it was usually neces-
sary to implement these wavebands and features using
interference filters on a separate camera system suit-
able for on-line multispectral inspection. Thus, a major
challenge of this conventional approach was the diffi-
culty of cross-system calibration to transfer the imag-
ing settings, developed by a spectrophotometer or hy-
perspectral imaging system, to a separate filter-based
multispectral imaging system (Lawrence et al., 2003a).
Considerable effort was required to ensure that the
final multispectral imaging system, utilizing different
optical components, would produce the same results as
the spectrophotometer or hyperspectral imaging equip-
ment used during system development.

Some recent studies have overcome the challenges of
cross-system calibration by using a hyperspectral-mul-
tispectral line-scan machine vision system for system
development through hyperspectral analysis to deter-
mine waveband selection and then using the same cam-

era system to implement on-line multispectral inspec-
tion (Yang et al., 2006a; Chao et al., 2007). This system
uses an imaging spectrograph to continuously acquire
narrow line-scan images across a linear field of view
(FOV) while moving targets across the FOV. In hyper-
spectral imaging mode, full-spectrum data are acquired
for each pixel in every line-scan image. Algorithms to
process the line-scan images can thus compile complete
images of the target objects and perform both spectral
and spatial analysis for determining wavebands and im-
age features for multispectral inspection purposes. The
same system can then be used in multispectral mode,
using only the specific wavebands and image features
selected. By acquiring only selected wavebands for ev-
ery pixel instead of full-spectrum data, the volume of
spectral data to be analyzed is reduced and on-line
multispectral imaging can then be performed with high
accuracy for objects moving at very high speeds.

The objective of this paper is to describe the devel-
opment, validation, and evaluation of a line-scan spec-
tral imaging system for on-line inspection of wholesome
and unwholesome (systemically diseased) chickens on
a commercial high-speed processing line. A line-scan
algorithm was developed and implemented for the sys-
tem to automatically detect each new bird on the line,
to identify image pixels to be analyzed for each bird,
and to classify each bird as wholesome or unwholesome
immediately after the bird exits the FOV and before
the next bird appears. Overall system performance on
a commercial chicken kill line operating at 140 birds/
min was evaluated by verification against a veterinar-
ian's bird identifications and also by comparison of the
inspection system's results with tallies produced by hu-
man inspectors after two 8-h shifts in the chicken pro-
cessing plant.

MATERIALS AND METHODS

Line-Scan Machine Vision System
The design of the line-scan machine vision system was

based on the use of an electron-multiplying charge-cou-
pled-device camera and an imaging spectrograph with a
linear FOV created by a slit in front of the spectrograph.
The FOV was illuminated by 2 pairs of high-power,
broad-spectrum white light-emitting-diode (LED) line
lights (LL6212, Advanced Illumination Inc., Rochester,
VT). A collimated light beam from each pixel of the
scanned line was dispersed through the ImSpectro V10
spectrograph (Spectral Imaging Ltd., Oulu, Finland)
to obtain a spectrum; therefore, a 2-dimensional image
of reflectance intensity was acquired for each scanned
line with spatial position along one axis (spatial dimen-
sion) and spectral waveband along the other (spectral
dimension). The PhotonMax 512b electron-multiplying
charge-coupled-device camera (Princeton Instruments,
Roper Scientific Inc., Trenton, NJ) used thermoelec-
tric cooling of its 512 x 512 pixel detector array to an
operating temperature of — 70°C and was used with a
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10-MHz, 16-bit digitizer for high-speed, low-light im-
age acquisition. The inspection software was built on
a LabVIEW 8.2 (National Instruments, Austin, TX)
platform.

As shown in Figure 1, the distance from the camera
lens to the shackle line was 914 mm. The angles of illu-
mination before and after the linear FOV were adjusted
to maximize the reflectance intensity. Two line lights
were mounted together on a single joint to the right of
the camera, such that their angles of illumination were
not independently adjustable. The other 2 line lights
were similarly mounted to the left of the camera. The
right pair and the left pairs were separated by 115 mm,
each pair at a distance of 254 mm perpendicular to
the shackle line (measured from shackle line to mount-
ing joint). The inner pair of line lights was positioned
slightly behind the outer pair rather than with their
forward faces flush, to allow for some forward move-
ment of the target surface (up to 25 mm) so that the

convex surface of a bird, even if pushed slightly more
forward than normal, would still be adequately and
uniformly illuminated. The outer pair was positioned a
half head lower than the inner pair to avoid the inter-
ference that would have resulted if the adjacent LED
lights had been mounted at equal height. The vertical
FOV for each scanned line was 178 mm. The spatial
resolution of each line-scan image was 0.35 x 0.35 mm
per pixel.

As described above, a single line-scan image covers
a linear spatial FOV of 178 mm in height. This linear
distance was represented by 512 spatial points. By de-
fault, the 512 x 512 detector array can acquire a single
hyperspectral line-scan image consisting of 512 spectral
data points for each of the 512 spatial points—a total
image size of 512 x 512 pixels. This line-scan image
size was reduced by binning the spectral dimension by
4 (i.e., accumulating every 4 pixels along the spectral
dimension as 1 pixel, thereby reducing the total line-
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Figure 1. Schematic of spectral imaging system and illumination position on processing line.
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scan image size to 512 x 128 pixels). With the LED
line lights illuminating a 99% diffuse reflectance target
(Spectralon, Labsphere, North Sutton, NH), it was ob-
served that for the first 19 spectral channels and the
last 54 spectral channels (out of 128 total), the reflec-
tance from the LED lights was too low to be useful.
These channels were consequently discarded and all
hyperspectral imaging was performed using only the
remaining 55 spectral channels (512 x 55 pixels). Spec-
tral calibration performed using 6 spectral peaks from
the emission of a neon-mercury pencil light: 436 and
546 nm from mercury and 614, 640, 703, and 724 nm
from neon. The 55 channels of each hyperspectral line-
scan image spanned from 389 to 744 nm, respectively,
with an average spectral bandwidth of 6.6 nm.

During real-time continuous operation, the spectral
line-scan imaging system can immediately analyze each
line-scan as it is acquired and also analyze a set of
line-scan images compiled for one target (such as one
whole bird) before the next target enters the FOV. The
significant advantage presented by this system is its ca-
pacity to continuously operate in either hyperspectral
or multispectral mode, with the ability to select any of
the available spectral channels through the camera con-
trol software. As described above, each hyperspectral
line-scan image acquired in this study consisted of spec-
tral data across 55 spectral channels (after binning) for
each spatial point in the line-scan image. Hyperspectral
analysis was performed to select wavebands and de-
velop inspection algorithms for multispectral inspection
of chickens for wholesomeness using the same imag-
ing system; implementation of the selected wavebands
would thus only involve adjustments through software
control settings, rather than implementation of optical
filters on an entirely separate imaging system as might
be required for conventional multispectral imaging sys-
tems.

During system development, the wavebands essential
for differentiation of wholesome and systemically dis-
eased chickens were selected from analysis of the hyper-
spectral images. For on-line differentiation of poultry
carcasses, only measurements for the spectral pixels
corresponding to the selected wavebands were digitized
for the computer and used by the system in multispec-
tral imaging mode. Both hyperspectral and multispec-
tral line-scan images in this study were acquired using
a camera exposure time of 0.1 ms with an electron-
multiplying gain of 45. This short exposure time was
critical to the effective performance of the system for
on-line imaging inspection of chicken carcasses on the
rapidly moving processing line.

Overview of 3-Stage Experiment
This work to develop and test a multispectral imag-

ing-based method to differentiate wholesome and sys-
temically diseased chickens was performed in 3 stages.
In stage I, hyperspectral line-scan images of chickens on
the processing line were acquired on-line and then com-

piled and analyzed in the laboratory to develop spe-
cific waveband and image feature selections for use in
multispectral inspection. In stage II, validation of the
waveband and image feature selections was performed
by repeating the waveband and image feature selec-
tion process using a new set of hyperspectral images
acquired on-line in the processing plant. Validation was
also performed by using the selected wavebands and
image features during on-line multispectral inspection
in the processing plant and comparing the imaging sys-
tem's results with a limited number of bird evaluations
performed by a veterinarian observing the same birds
as they passed on the processing line. In stage III, the
performance of the imaging system was evaluated based
on continuous multispectral inspection of chickens dur-
ing two 8-h shifts in the processing plant.

All hyperspectral and multispectral line-scan imaging
was conducted on a 140 birds/min chicken kill line at a
Tyson Foods processing facility (Gumming, GA). Stage
I hyperspectral imaging acquisition was conducted in
March 2007. Stage II hyperspectral imaging acquisition,
stage II multispectral on-line inspection (limited), and
stage III multispectral on-line inspection (continuous
inspection over 2 shifts) was conducted in July 2007.

Calibration of the transportable spectral line-scan
imaging system was necessary at the start of each day's
work after the equipment was put on the chicken pro-
cessing line because the system was dismantled and re-
moved at the end of each day. A white 99% diffuse re-
flectance panel was used as a reference target while the
LED line lights were adjusted to maximize reflectance
intensity across all pixels of the line-scan images. The
target was mounted on a tripod positioned at a dis-
tance matching the chicken-to-lens distance used dur-
ing on-line imaging. Following the illumination adjust-
ment, white (W) and dark (D) reference images were
acquired. Five line-scan images were acquired using
the illuminated reference target; these were averaged
to calculate the reference image W. With the lights
off and the camera lens covered, another 5 line-scan
images were acquired and averaged to calculate the ref-
erence D. The reference images W and D were used
by the software of the imaging system during on-line
imaging to convert raw reflectance line-scan images (/#)
that were subsequently acquired that day to relative
reflectance line-scan images (/), according to the fol-
lowing equation: I— (Ig — D)/(W — D).

Stage I: Development
Conducting continuous line-scan imaging of birds on

a moving processing line required the development of
a bird detection algorithm. Once it is turned on, the
spectral line-scan imaging system continuously acquires
line-scan images regardless of what is presented in its
FOV, and no external sensors are used to tell the sys-
tem whether a bird is present or not. Thus, a bird de-
tection algorithm was developed for real-time analysis
of each individual line-scan image immediately after
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Systemically diseased
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Figure 2. Reference points defining the possible region of interest (ROI) areas for analysis: the starting point (SP), the starting line (SL), the
ending line (EL), the top boundary (TB), and the bottom boundary (BB).

acquisition, to enable the system to detect the entry
and exit of individual birds in the FOV. During all
on-line imaging of birds on the processing line, a black
panel was hung behind the processing line, opposite the
imaging system, for image segmentation (i.e., to enable
separation of bird carcass pixels from background pix-
els in the images).

Stage I hyperspectral imaging was conducted to col-
lect line-scan images for the off-line analysis used to
develop the bird detection algorithm. The system was
freely run to acquire hyperspectral line-scan images of
birds on the processing line, with a veterinarian posted
beside the imaging system to observe and evaluate each
bird's condition. Hyperspectral line-scan images were
recorded for a total of 5,309 birds (5,260 wholesome,
49 systemically diseased) during stage 1 hyperspectral
imaging.

Bird Detection Algorithm. Figure 2 shows the 620-
nm waveband for 2 whole-carcass bird images compiled
from hyperspectral line-scan images. Analysis of the
hyperspectral data found that carcass pixels and back-
ground pixels showed the greatest difference in rela-
tive reflectance at the 620-nm waveband. Therefore,
a threshold value of 0.1 relative reflectance intensity
at 620 nm was selected by which the bird detection
algorithm could classify pixels as being either carcass
pixels (intensity >0.1) or background (intensity <0.1).
Designed as a line-by-line algorithm for on-line imag-
ing, the bird detection algorithm examines the relative
reflectance at the 620-nm waveband in each new line-
scan image acquired.

The bird detection algorithm examines only the up-
per 200 pixels in each line-scan image, corresponding to
the uppermost 69 mm of the FOV, covering the height
at which a properly hung bird's legs would appear in
the FOV. This upper area of the line-scan image was
termed the carcass detection length (CDL). If all CDL
pixels showed 620-nm relative reflectance values below
the 0.1 threshold, the algorithm assumes that no bird
is present in the FOV. The initial entry of a bird into
the FOV is recognized when the relative reflectance at
620 nm increases above the 0.1 threshold for any single
pixel within the 200 CDL pixels (i.e., the detection of a
nonbackground pixel). This method only examines the
uppermost 200 pixels to disregard possible anomalies
in the position of the wings. After the initial detection
of a nonbackground pixel in the CDL, each subsequent
line-scan image is monitored for the appearance of ad-
ditional nonbackground pixels in the CDL. As a bird
continues to move across the FOV, the bird's leg and
body begin to fill the area of the CDL pixels. Eventu-
ally, the algorithm finds a line-scan image containing
only one remaining background pixel or several adja-
cent background pixels in the CDL, immediately fol-
lowed by a line-scan image containing no background
pixels. When this occurs, the spatial coordinate of the
last background pixel is recorded, and the pixel at this
same coordinate in the line scan that contains no back-
ground pixels is identified as the starting point (SP) for
the bird. This point is located along the leading edge
of the chicken at the junction of the thigh and the side
of the belly, as shown in Figure 2. The line-scan image
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containing this SP pixel is identified as the starting
line (SL) for the bird. The bird detection algorithm
continues to monitor the pixels in subsequent line-scan
images that are located at the same SP coordinate un-
til those pixels indicate a turnover in 620-nm relative
reflectance intensity from nonbackground (>0.1) back
to background (<0.1). This turnover indicates that the
main body of the bird has passed through the FOV and
that the ending line (EL) of the bird has been found.
The SP, SL, and EL are marked on the 2 example bird
images in Figure 2.

Region of Interest Selection. The line-by-line bird
detection algorithm described above was the critical
framework on which the differentiation method to iden-
tify wholesome and systemically diseased birds on-line
was developed. For each bird, differentiation was based
only on analysis of breast-area pixels located within the
line-scan images between the SL and EL, avoiding ir-
regularly illuminated areas such as the wings, legs, and
sides of the body. However, even between the SL and
EL, analysis of all of the pixels in these line-scan im-
ages was not desirable due to variations in bird size and
shape, which caused some birds to have many back-
ground pixels showing at the bottom of each line scan
and shadow-edge effects, whereas other birds might
have no such pixels, which could also produce some
shadow effects along the edges of the breast area. It
was thus necessary to select a region of interest (ROI)
in each line-scan image containing pixels to be analyzed
for bird differentiation.

Already identified by the bird detection algorithm,
the SP was an important reference point for locating
the boundaries of potential ROI on the bird breast area
to be used for effective differentiation. Figure 2 shows
the reference points used to define the possible ROI
areas. Within each line-scan image between a bird's
SL and EL, possible ROI pixels were counted starting
from the pixel at the SP coordinate (0%) and proceed-
ing down to either the first background pixel encoun-
tered toward the bottom of the line-scan image or the
last nonbackground pixel if no background pixels were
present at the bottom of the line-scan image (100%).
The ROI investigated for ROI selection were defined
by a top boundary (TB) value and a bottom bound-
ary (BB) value, each of which specifies a percentage
of the full 100% possible ROI region. For example, for
an ROI defined by a TB value of 30% and BB value of
70%, each line scan between the SL and EL would be
examined to find the location of the bottommost pixel
that defines the 100% ROI, and the pixels located from
the 30% location down to the 70% location would be
selected for analysis as ROI pixels. Regions of inter-
est defined by TB values of 10, 20, 30, and 40% and
BB values of 60, 70, 80, and 90% were evaluated as
described below to select ROI boundaries for effective
differentiation of wholesome and systemically diseased
chickens.

For each potential ROI as defined by specific TB
and BB values, ROI pixels were extracted from the hy-

perspectral images of 785 wholesome chickens and the
spectra of all of these pixels were averaged to calculate
the average wholesome ROI spectrum. Similarly, the
average systemically diseased ROI spectrum was calcu-
lated using ROI pixels extracted from the hyperspectral
images of 9 systemically diseased chickens. For each
potential ROI, the difference spectrum (between the
average wholesome and average systemically diseased
spectra) was calculated. Maxima points in the differ-
ence spectrum show the wavelengths at which whole-
some and systemically diseased spectra differ the most
in their spectral character. By evaluating the potential
ROI in this manner, the final ROI selection was that
which produced the greatest magnitude spectral dif-
ferences between wholesome and systemically diseased
spectra.

Waveband Selection. Given the final selection of
ROI boundaries to use, a bird differentiation algorithm
was then developed to identify wholesome and systemi-
cally diseased birds based on ROI pixel analysis using
1) relative reflectance intensity measured at a single
waveband and 2) a ratio of the relative reflectance in-
tensities measured at 2 different wavebands.

To select a single waveband for use in intensity-based
differentiation, the difference spectrum was calculated
between the average wholesome ROI spectrum and av-
erage systemically diseased ROI spectrum. The single
waveband at which the greatest difference occurred was
selected as key waveband A (i.e., the intensity at A
for each individual ROI pixel of a bird (/^) would be
used as an input feature to the multispectral differen-
tiation algorithm). From the hyperspectral data set of
785 wholesome and 9 systemically diseased birds, the
average and SD values of I A were also calculated for all
of the wholesome ROI pixels and all of the systemically
diseased ROI pixels, to be used as inputs to the multi-
spectral differentiation algorithm.

To select a pair of wavebands for use in 2-waveband
ratio-based differentiation, wavebands were identified
at 3 local maximum points in the average wholesome
and average systemically diseased ROI pixel spectra;
each of these peak wavebands was paired with a base
waveband at a local minimum point preceding the
peak. For each peak-base waveband pair, the ratio of
the 2 waveband intensities was calculated for the aver-
age wholesome ROI pixel spectrum, and also for the
average systemically diseased ROI pixel spectrum. The
difference between the wholesome ratio value and sys-
temically diseased ratio value was then calculated for
each peak-base pair. The pair that produced the great-
est difference between the wholesome ratio value and
the systemically diseased ratio value was selected to
be used for ratio-based differentiation, with the peak
waveband identified as p and its paired base waveband
identified as b. Thus, the ratio of the intensities at b
and p for an individual ROI pixel (Itflp) would be used
as an input feature to the multispectral differentiation
algorithm. The average and SD values for the whole-
some Ifr-Ip ratio and for the systemically diseased Ifr.Ip
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ratio were also calculated from the hyperspectral data
set to be used as inputs to the multispectral differentia-
tion algorithm.

Multispectral Differentiation Algorithm. The mul-
tispectral differentiation algorithm was built around
the line-by-line bird detection algorithm and was devel-
oped to incorporate the I A values and Ifr-Ip ratio values
for individual ROI pixels as initial input features. A
method to analyze individual pixels as being indica-
tive of systemic disease was developed using 2 mapping
functions, one for intensity differentiation and another
for ratio differentiation. The differentiation algorithm
first calculates outputs for each ROI pixel of an indi-
vidual bird and then calculates a final output value for
the bird based on the pixel outputs.

To calculate outputs for an ROI pixel, the mapping
functions each convert one input value to one output
value that estimates a pixel's possibility of being indic-
ative of systemic disease, using 2 main reference points:
1) the average value of the input feature for systemi-
cally diseased ROI pixels and 2) the difference between
the average and SD values of the input feature for
wholesome ROI pixels. Figure 3 shows the intensity-dif-
ferentiation mapping function and ratio-differentiation
mapping function, where reference points a, 6, c, and d
are defined as follows: a = the average I A for systemi-
cally diseased ROI pixels; b = the difference between
average I A and its SD for wholesome ROI pixels; c —
the average Ifrlp for systemically diseased ROI pixels;
and d — the difference between average I^Ip and its SD
for wholesome ROI pixels.

The intensity differentiation mapping function as-
signed the intensity output ( O j ) to be 1 when the input
IA < a and to be 0 when the input IA > b. For input
values between a and 6, output O/ was calculated ac-
cording to this formula: O/— (b — /^)/(6 — a). Similar-
ly, the ratio differentiation mapping function assigned
the ratio output (OR) to be 1 when the input Itf.Ip < c
and to be 0 when the input Ifclp > d. For input values
between c and d, output OR was calculated according
to this formula: OR = (d — I^Ip)/(d — c). Higher out-

put values were correlated to a higher possibility of a
pixel being indicative of systemic disease.

The multispectral differentiation algorithm begins
for a single bird when the bird detection algorithm first
detects the SP and the SL (i.e., when the system knows
there is a bird present and ready to be analyzed). Once
the SL is detected, the ROI pixels within this line-scan
image are immediately located. For each ROI pixel, the
I A, Ip, and /& values are acquired, the Ifr-Ip ratio is cal-
culated, and the O/ and OR values are immediately
calculated. For each ROI pixel, the O/ and OR values
are averaged to produce one output value for each ROI
pixel (Opixei), and this value is temporarily stored in
memory as line-scan imaging continues. For each new
line-scan image, this same process of immediately lo-
cating ROI pixels and calculating Opixei for each pixel
is repeated until the bird detection algorithm detects
the EL, which indicates that there are no more relevant
line-scan images to analyze for the current bird. At this
point, the algorithm has temporarily stored an Opixei
value for every ROI pixel for the bird and now calcu-
lates the average Opixei value for all ROI pixels. This
final averaged decision output ( O f ) is compared with a
preset threshold value (T) to identify the bird as be-
ing either wholesome or systemically diseased: if Of >
T, bird is systemically diseased and if Of < T, bird is
wholesome.

After the final classification of a bird as either sys-
temically diseased or wholesome, the algorithm begins
again to analyze subsequent line-scan images to detect
the SP of the next bird to be inspected.

Off-Line Multispectral Differentiation. The multi-
spectral inspection algorithm was tested using the re-
maining hyperspectral images of 4,475 wholesome and
40 systemically diseased birds that were not used dur-
ing analysis and development of the inspection algo-
rithm. Although the images consisted of hyperspectral
data (55 spectral channels), testing used only /^, Ip,
and /&, the intensities at the key waveband A and at the
peak and base wavebands, during off-line execution of
the line-by-line multispectral inspection algorithm.

Mapping output Of Mapping output OR

Figure 3. The structure of the intensity-differentiation and ratio-differentiation mapping functions used to convert I A and Ifr.Ip inputs to out-
puts Oi and 0#, respectively. I A = the intensity at A for each individual region of interest (ROI) pixel of a bird, where A is the single waveband
at which the greatest difference occurred; I^.Ip = ratio of the intensities at b and p for an individual ROI pixel, where p is the peak waveband and
b is its paired base waveband; Oj = intensity output; OR — ratio output.
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Stage //; Validation
ROI and Waveband Selection. In stage II, the ROI

and waveband selections that were used to develop the
multispectral inspection algorithm were validated. For
this purpose, a new set of hyperspectral images was
acquired for 191 wholesome chickens and 7 systemically
diseased chickens on the 140 birds/min processing line.
The process of evaluating ROI and selecting wavebands
used in stage I was repeated using this new hyperspec-
tral image data.

On-Line Multispectral Inspection Validation by
Veterinarian. The multispectral inspection algorithm
was tested on-line with the assistance of an FSIS veteri-
nary medical officer. The imaging system was set up for
multispectral imaging on the 140 birds/min processing
line and the veterinarian was posted beside the imaging
system to observe the birds in real time, immediately
before they entered the imaging FOV. The veterinarian
identified systemically diseased birds, and the classifi-
cation decision of the imaging system for each of these
birds was compared with the veterinarian's identifica-
tion. Because of the low-frequency occurrence of sys-
temically diseased birds, on-line multispectral inspec-
tion in this manner was conducted during 2-d shifts
to obtain a total data set of 90 systemically diseased
chickens.

Stage ///: On-L/ne System Evaluation
In stage III, the performance of the imaging system

was evaluated based on continuous multispectral in-
spection of chickens on the processing line during two
8-h shifts in the processing plant. Because immediate
comparison between inspection system output and in-
spector evaluations for individual birds was not feasi-
ble, the resulting counts of wholesome and systemically
diseased birds produced by the inspection system were
compared with numbers from the FSIS tally sheets pro-
duced by the human inspectors that worked the same
processing line during those two 8-h shifts. Addition-
ally, several limited periods (30 to 40 min each) of in-
spection verification were performed by a veterinarian
who identified individual wholesome and systemically
diseased chickens immediately before they entered the
inspection system FOV, to produce direct comparison
data for verification of the inspection system perfor-
mance.

RESULTS AND DISCUSSION

Stage I: Development
ROI Selection. Hyperspectral images of 785 whole-

some chickens and 9 systemically diseased chickens were
analyzed to select an ROI for use by the differentiation
algorithm. Sixteen possible ROI were considered, de-
fined by TB values of 10, 20, 30, and 40% and BB values
of 60, 70, 80, and 90%. The difference spectrum, calcu-

lated from the average wholesome ROI pixel spectrum
and average systemically diseased ROI pixel spectrum,
consisted of the average intensity difference at each of
55 spectral channels; the range of these values for each
of the possible ROI is shown in Figure 4. For example,
for the 10 to 90% ROI, the greatest intensity difference
between wholesome and systemically diseased chickens
was 0.195 (occurring at the 580-nm spectral channel),
and the lowest intensity difference was 0.153 (occur-
ring at the 389-nm spectral channel). Between different
ROI, individual spectral channels produced similarly
distributed intensity differences; for example, the maxi-
mum intensity difference for each ROI was always pro-
duced by either the 573- or 580-nm spectral channel,
and the minimum intensity difference always produced
by the 389-nm spectral channel. However, the greatest
magnitude single-channel intensity difference was 0.210
and occurred at the 580-nm spectral channel for the 40
to 60% ROI, represented at the top of the rightmost
bar in Figure 4. For this reason, the 40 to 60% ROI
was selected by which to differentiate wholesome and
systemically diseased chickens.

Waveband Selection. Figure 5 shows the average
wholesome ROI pixel spectrum and the average sys-
temically diseased ROI pixel spectrum for pixels ex-
tracted from the 40 to 60% ROI. Because the greatest
intensity difference occurs at 580 nm, this waveband
was selected to be key waveband A for intensity-based
differentiation. Figure 5 also shows the 3 peak wave-
bands and 3 base wavebands that were paired for use in
2-waveband ratio-based differentiation. For pair 1, the
ratio of intensities at 435 and 455 nm was calculated
first from the wholesome spectrum and then from the
systemically diseased spectrum; the difference between
the 2 ratio values was 0.003. For pair 2, using 495 and
534 nm, the difference between the 2 ratio values was
0.039. For pair 3, using 580 and 620 nm, the difference
between the ratio values was 0.121. Pair 3 clearly results
in a much greater difference in ratio values between the
wholesome and systemically diseased spectrum. Thus,
the 580- and 620-nm wavebands were selected as the
base and peak wavebands, b and p, for differentiation
of wholesome and systemically diseased birds using the
ratio of the 2 waveband intensities, Ifclp.

Multispectral Differentiation Algorithm. The map-
ping functions used to classify ROI pixels as either
wholesome or systemically diseased used the average
and SD values for I A and for I^:Ip calculated from ROI
pixels from the 785 wholesome and 9 systemically dis-
eased chicken images. The average wholesome I A value
was 0.460 and the SD was 0.101. The average systemi-
cally diseased IA value was 0.250 and the SD was 0.095.
The mapping function for intensity-based pixel differ-
entiation thus used reference point a = 0.250 (aver-
age systemically diseased IA) and b = 0.359 (difference
between the average wholesome IA and the SD, 0.460 —
0.101), shown in Figure 6.

Two-waveband ratio-based differentiation used the
intensities at peak waveband p = 620 nm and base
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Figure 4. The range of the 55-channel spectral differences between the average wholesome region of interest (ROI) pixel spectrum and the
average systemically diseased ROI pixel spectrum for each of 16 possible ROI. TB = top boundary; BB = bottom boundary.

waveband b = 580 nm. The average wholesome I^.Ip
value was 0.970 and the SD was 0.028. The average
systemically diseased Itf.Ip value was 0.849 and 0.078.
The mapping function for ratio-based pixel differen-
tiation thus used reference points c = 0.849 (average
systemically diseased Ifclp) and d — 0.942 (difference

between the average wholesome Ifr.Ip and the SD, 0.970
— 0.028), also shown in Figure 6.

Off-Line Multispectral Differentiation. The mul-
tispectral inspection algorithm utilizing the intensity-
based differentiation and ratio-based differentiation
inputs was tested off-line for hyperspectral images of
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Figure 5. The average wholesome region of interest (ROI) pixel spectrum and average systemically diseased ROI pixel spectrum for pixels
extracted from stage I hyperspectral images using the 40 to 60% ROI.
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Table 1. Confusion matrix for off-line testing of differentiation
algorithm for hyperspectral chicken images acquired during stage
I algorithm development

Machine system

Veterinarian

Wholesome
Systemically diseased

Wholesome

4,474
2

Systemically
diseased

1
38

4,475 wholesome and 40 Systemically diseased chickens
previously acquired, extracting only the data for the
wavebands A, p, and b. Table 1 shows the confusion
matrix for the results: the system correctly identified
4,474 of 4,475 wholesome chickens and 38 of 40 systemi-
cally diseased chickens. Figure 7 shows the distribution
of the inspection system results, where the Of decision
output value falls above the threshold value T = 0.60
for all but 2 Systemically diseased chickens and also for
one of the 4,475 wholesome chickens.

Stage //: Validation
The process of evaluating ROI and waveband se-

lections was repeated using a new set of hyperspec-
tral images acquired for 191 wholesome chickens and
7 Systemically diseased chickens on the 140 birds/min
processing line. The new hyperspectral images were
acquired on-line with the use of an FSIS-approved
motor-driven guiding belt installed behind the chicken
carcasses. During stage I imaging, it was observed that
chicken carcasses hung on the shackles were often sub-
ject to a swinging motion that could increase inconsis-
tency in the distance from carcass to lens. To address
this concern, the guiding belt was installed in stage
II to operate in synchronization with the processing
line so as to provide physical support from behind the
chickens without creating drag or otherwise interfering

in movement along the line. The belt minimized carcass
vibration and increased the consistency of the focal dis-
tance. The belt primarily contacted the thigh and leg
area of a wholesome bird.

Using the newly acquired hyperspectral data, the
evaluation of 16 possible ROI again found that the 40
to 60% ROI yielded the greatest single-channel differ-
ence (0.167) between the average wholesome ROI pixel
spectra and the average Systemically diseased ROI pix-
el spectrum, again occurring at the 580-nm waveband.
This waveband confirmed the 580-nm waveband as key
waveband A for intensity-based differentiation, with an
average I A of 0.392 for wholesome ROI pixels and SD
of 0.102 and an average I A of 0.225 for Systemically
diseased ROI pixels and SD of 0.074. For 2-waveband
ratio-based differentiation, the same 3 waveband pairs
were evaluated: For pair 1, using 435 and 455 nm, the
difference between the wholesome and Systemically dis-
eased ratio values was 0.029. For pair 2, using 495 and
534 nm, the difference between the 2 ratio values was
0.030. For pair 3, using 580 and 620 nm, the difference
between the ratio values was 0.044. Thus, the 580- and
620-nm wavebands were confirmed as the selections for
the base and peak wavebands, b and p, for differentia-
tion of wholesome and Systemically diseased birds using
the Ifclp ratio of the 2 waveband intensities. The aver-
age Ifclp for wholesome ROI pixels in the hyperspectral
data set was 0.948, with a SD of 0.036. The average
Ib'.Ip for Systemically diseased ROI pixels was 0.904,
with a SD of 0.052.

From these results, the new mapping function refer-
ence points were assigned as a = 0.225; b = 0.290; c
= 0.904; and d = 0.912. Multispectral on-line inspec-
tion was conducted to test the multispectral inspec-
tion algorithm with these new reference points. The
veterinarian identified Systemically diseased birds ap-
proaching the inspection system and the classification
identification decisions of the inspection system for
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Figure 6. The average and SD values for I A and I^Ip for region of interest (ROI) pixels from stage I hyperspectral images, for A = 580 nm,
b = 580 nm, and p = 620 nm. I A = the intensity at A for each individual ROI pixel of a bird; I^.Ip — ratio of the intensities at b and p for an
individual ROI pixel.
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Figure 7. The inspection system results for off-line multispectral differentiation of stage I hyperspectral images. ROI = region of interest.
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Figure 8. The inspection system results for on-line multispectral inspection of chickens on the processing line during stage III, shift 1. ROI
region of interest.
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Figure 9. The inspection system results for on-line multispectral inspection of chickens on the processing line during stage III, shift 2. ROI
= region of interest.

these specific birds were immediately compared with
the veterinarian's diagnosis. Again, the low-frequency
occurrence of systemically diseased birds required on-
line multispectral inspection to be conducted during
2-d shifts to obtain a total data set of 90 systemically
diseased chickens. The Of value for each of the 90 birds
fell above the 0.60 threshold value; thus, the machine
correctly classified 100% of these 90 systemically dis-
eased birds.

Stage ///: On-Line System Evaluation
With finalization of the intensity- and ratio-based

reference points for the differentiation algorithm, the
multispectral inspection system was tested on the poul-
try processing line during the operation of 2 normal 8-h
day shifts. Due to logistical requirements with plant

Table 2. Confusion matrix for verification of inspection system
results during shift 1 on-line multispectral inspection by veteri-
narian identifications

Machine system

Veterinarian

Wholesome
Systemically diseased

Wholesome

16,056
2

Systemically
diseased

118
41

operations, the system was allowed to be set up on the
line and turned on only after the processing line had al-
ready begun to move at the start of each shift, and the
system was required to be disassembled and removed
before final washdown, which was immediately begun
on the tails of the last bird on the processing line dur-
ing the day shift. Consequently, the system was tested
during continuous operation over most of the duration
of each day shift but was not able to inspect all of the
birds processed during that shift.

During the first shift, the inspection system identified
254 of 45,456 chickens as being systemically diseased,
indicating a systemically diseased fraction of 0.56%.
The FSIS tally sheets showed that inspectors counted
84 of 53,563 birds as being systemically diseased, a frac-
tion of 0.16%. During the second shift, the inspection
system identified 98 of 61,020 chickens as being sys-
temically diseased, a systemically diseased fraction of
0.16%. The FSIS tally sheets showed that inspectors
counted 71 of 64,971 birds as being systemically dis-
eased, a fraction of 0.11%. Although bird-by-bird direct
comparison of system and human inspectors was not
feasible, the relative fractions of systemic bird identified
by each side are similar, suggesting that the inspection
system was operating in a consistent manner to iden-
tify systemically diseased birds. Figures 8 and 9 show
the distribution of the Of decision values for the first
and second shifts, respectively, where all systemically



1264 YANG ET AL.

Table 3. Confusion matrix for verification of inspection system
results during shift 2 on-line multispectral inspection by veteri-
narian identifications

Machine system

Veterinarian

Wholesome
Systemically diseased

Wholesome

27,580
1

Systemically
diseased

46
34

diseased decision outputs are above T — 0.6. It can be
observed that the bird detection and multispectral in-
spection algorithms detected and analyzed between 500
and 4,000 ROI pixels per bird, depending on the size of
the bird. Although Systemically diseased birds exhibit
a general tendency to be smaller than wholesome birds,
the distribution shows that the inspection system did
not assume smaller birds to be Systemically diseased,
and a sufficient number of ROI pixels were detected
even for the smallest birds for effective inspection.

System verification was also performed during mul-
tiple periods of 30 to 40 min, during which identifica-
tion of birds by a veterinarian posted beside the in-
spection system could be directly compared with the
inspection system's final output for each bird. During
the first shift, a total of 16,217 chickens were identified
by the veterinarian before inspection over 4 verifica-
tion periods; during the second shift, a total of 27,661
chickens were identified before inspection. Tables 2 and
3 show the confusion matrices to compare veterinarian
identification with inspection system output for these
birds. The system correctly identified 99.3 and 99.8% of
wholesome chickens during the shift 1 and shift 2 veri-
fication periods, respectively, and correctly identified
95.4 and 97.1% of Systemically diseased chickens dur-
ing those same verification periods. These results, com-
bined with the general performance of the system as
considered against FSIS tally sheets, demonstrates that
the inspection system can effectively classify wholesome
and Systemically diseased chickens on a 140 birds/min
processing line. An ideal application for this system
would be on-line presorting of young chickens on high-
speed kill lines in a HIMP processing plant, using a
conservative adjustment of the decision threshold to
prevent unwholesome birds from entering the eviscera-
tion line. The much smaller fraction of unwholesome
and questionable birds would be easily diverted to a re-
jection line that, if desired, could allow for reinspection
by a human inspector to minimize possible economic
losses posed by rejected wholesome birds.

In conclusion, a line-scan spectral imaging system
successfully implemented a multispectral bird detection
and inspection algorithm to differentiate Systemically
diseased chickens from wholesome chickens on a 140

birds/min high speed commercial processing line. The
system successfully performed on-line hyperspectral
image acquisition to collect data for development of
a line-by-line multispectral bird detection and differ-
entiation algorithm. The same system was then used
for implementation of the multispectral differentiation
algorithm, and demonstrated effective on-line multi-
spectral inspection of chickens at 140 birds/min during
in-plant testing conducted over two 8-h shifts. The sys-
tem can be used for on-line inspection applications to
increase efficiency, reduce labor and cost, and produce
significant benefits for poultry processing plants.
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